人工智能与金融相结合,是种怎样的体验
人工智能与金融融合是对金融的变革,但是离不开人。
人工智能对于现代化交易交易来说是一个变革,只要人类对需要使用的技术进行编程,植入数据,那么人工智能就会根据已有的数据经验进行分辨,进而决定交易风向和止盈止损,这个对于人类来说,避免了无时无刻的盯盘和数据收集,系统会自己收集数据,处理数据,得出结论。对于操盘手这个职业是一个颠覆,不再需要那么多的交易员,只需要几台人工智能机器。
但是人工智能的数据库是基于人类的智慧才形成,人的作用任然发挥着重大的作用,人类通过既往经验的总结,归纳,得出结论,形成系统的数据库。最后再把数据库植入植入。所以人工智能是人类智慧和经验复制品。人工智能做的事情,仅仅是识别和执行。
既然人工智能是人类智慧的复制品,仅仅是识别已有的经验和执行操盘,那么面对未知的风险和知识,人工智能就会手足无措,因为它对这个领域是无知的,所有它识别不了,执行不了,这就是风险。
但是我们可以利用人工智能筛选过滤有用的数据,更好的发挥在金融交易体系中去,人工智能对于我们来说是高效的。可以监管资金的流向,市场信息变化,也可以作为市场监管的一个工具,查找哪些微小的漏洞,这些都是有益的。
人工智能与金融的结合,是新金融局面的展开,是金融科技的进步。
在金融领域,人工智能最大的潜力究竟是什么
近来,人工智能已成为全球各行业的关注点,就金融领域而言,人工智能属于Fintech一系列技术创新中的一种,Fintech,即FinancialTechnology,可界定为是基于大数据、云计算、人工智能、区块链等技术全面应用于支付清算、借贷融资、财富管理、零售银行、保险、交易结算等金融领域,实现金融+科技高度融合。一言蔽之,人工智能同金融科技中的其他技术一样是将科学技术应用于金融行业服务于普罗大众,降低行业成本,提高行业效率的技术手段。
截止今年6月,全球共有超过1362家Fintech公司,来自超过54个国家,融资总额超过497亿美元。埃森哲的研究报告表明,全球金融科技产业投资在2015年增长75%至223亿美元。美国纳斯达克和投资银行KBW携手推出了KBWNasdaq金融科技指数KFTX,该指数共49只成分股,全部市值约为7850亿美元,占美国国内股票市值的4%,这也是第一只仅包含在美国上市的金融科技公司的指数,Fintech产业链井喷式的发展仍然持续,中国金融科技行业增长445%,接近20亿美元,该行业越来越受到全世界的关注。
同样,人工智能在金融领域的运用也在不断被研究深化,应用场景不断多元化。在讨论人工智能在金融领域中的应用潜力之前,我们先来了解下人工智能较其他技术而言独有的特性,用《时空中的金融科技》中的一句话来概括:“人工智能正在提升价值跨时间使用的能力,证明时间就是金钱的这一说法。”具体来说人工智能能够在以下三个方面“跑赢”时间:
1、快速吸收信息、将信息转化为知识的能力。人工智能在对文本、语音和视频等非结构化信息的获取方面出现较大飞跃,人类手工收集、整理、提取非结构化数据中有用信息的能力已不如人工智能程序,特别是文本信息,在自然语言处理和信息提取领域,这样的技术不仅限于二级市场的量化交易,对一个公司上市前各融资阶段或放贷对象的基本面分析乃至在实体经济中对产业生态和竞争格局的分析等都可以使用这样的技术来争取时间优势。
2、在领域建模和大数据分析基础上预测未来的能力。时间最本质的属性就是其箭头不可逆。未来是不确定的,但又是有规律可循的。基于知识图谱的领域建模、基于规模化大数据的处理能力、针对半结构化标签型数据的分析预测算法三者的结合,是人工智能在时间维度上沟通过去和未来,减少跨越时间的价值交换带来的风险的优势所在。
3、在确定规则下优化博弈策略的能力。价值交换领域充满了博弈,博弈皆需解决局势判断和最优对策搜索两个基本问题。人工智能由于人类,第一因为人工智能可以比人更充分地学习有史以来的所有公开数据;第二,人工智能可以比人更充分地利用离线时间采用左右互搏来增强学习策略;第三,人工智能可以几万台电脑共同协作,相对于几万人的协作而言不存在人类面对利益考量以及各种不淡定乃至贪婪的表现。所以,人工智能在博弈环节的普遍应用,也是一个必然的趋势。
具体到人工智能在金融领域的应用,笔者认为具有潜力的应用场景为量化投资以及智能投顾(或智能金融管家)、风险管理领域等。
量化投资已有实际案例,对标全球,世界最大的对冲基金桥水联合在2013年开启一个新的人工智能团队。RebellionResearch运用机器学习进行量化资产管理于2007年推出了第一个纯投资基金。今年9月末安信证券开发的A股机器人大战5万投资者的结局揭晓,从6月1日至9月的三个月里,以24.06%(年化96%)的累计收益率战胜了98%的用户。机器人运作模式是先从基本面、技术面、交易行为、终端行为、互联网大数据信息、第三方信息等衍化成一个因子库,属于数据准备过程,将因子数据提炼生成训练样本,然后选取机器学习算法进行建模训练,最后保留有效因子生成打分方程输出组合。机器人大数据量化选股较人类从基本面、公司财务等方面挑选因子量化选股而言更偏向从基本面、技术、投资者情绪行为类等方面挑选因子,对IT技术、数据处理技术的要求较高。
在智能投顾方面(智能金融管家)也已有初步的运用。广义的智能投顾,考虑投资者的财务情况对其进行个人财富精算配置,比如统筹考虑支票、储蓄、投资和养老保险。对于偏好主动进行资产管理的投资者,智能投顾能够根据投资者的问题,智能的分析海量信息给出答案。从国外的实践来看,智能投顾产品主要有投资推荐、财务规划和智能分析三种。具体应用案例如下:1)摩羯投顾:招商银行发布APP5.0,“摩羯智投”成为最大看点。摩羯智投运用机器学习算法,试图整合招商银行十多年财富管理实践及基金研究经验,并在此基础上构建以公募基金为底层资产,全球范围配置的“智能基金组合配置服务”。在利率市场化尾声之际,摩羯智投的问世,标志着银行等金融机构应对“储蓄搬家”的应对。对标海外智能投顾的资产管理规模已经从2012年几乎为零增加到2015年底的187亿美元。ATKearney预测,未来五年,机器人投顾的市场复合增长率将达到68%,到2020年,机器人投顾资产管理规模将突破2.2万亿美元。2)智能报告:人工智能能够自动搜集企业公告、上百万份研报、维基百科等公开知识库等披露信息后通过自然语言处理和知识图谱来自动生成报告。速度为0.4秒/份,60分钟即可生成全市场9000份新三板挂牌公司报告,在时空上的优势由此得以体现。3)信用卡还款:截至2015年末,全国人均持有银行卡3.99张,现代消费模式中,人们已习惯了信用卡或者手机绑定信用卡进行消费。一人多卡的现象有时会让持卡人忘记按时还款,逾期不还款的高额滞纳金会让用户产生损失。此类情况下人工智能能够将用户所有的信用卡集中管理,帮助用户在不同的还款期内合理安排资金,以支付最少的滞纳金。若账户没有余额的情况发生,开发公司会提供比信用卡公司利率更低的贷款,帮助用户还信用卡账单。
人工智能乃至金融科技的创新,是对金融市场、金融机构以及金融服务供给产生重大影响的新业务模式、新技术应用、新产品服务。他与传统金融并不是相互竞争的关系,而是以技术为纽带,相信未来将为有更多人工智能的应用场景出现,让传统金融行业摈弃低效、高成本的环节从而形成良性生态圈循环。
人工智能在银行应用不足与建议
人工智能在银行业的运用方面存在的一些不足,这通常取决于银行业的特殊性,一般性的业绩往往可以通过人工智能系统来处理和解决,但是一些需要做比较复杂分析的业务则无法由人工智能来完成,如对大额贷款的审核则就受到人工智能不足的影响,大额贷款行业往往涉及的方面会是很多的,这些也是人工智能不能做出有效分析的判定的原因。
这就要不断提升人工智能在金融风险分析上的研究。
人工智能会代替金融学吗
人工智能是机器是工具,金融涉及面就比较广了。要发展任何行业必先发展金融,干什么事首先需要的就是钱,个人认为人工智能取代不了金融,除非智能机器能像算命先生一样能把人算死,当然这是不可能的。两者哪个有前途取决于决策人在哪个方面有兴趣或者天赋。