ChatGPT引爆的AI热潮也“烧到了”金融圈,彭博社重磅发布为金融界打造的大型语言模型(LLM)——BloombergGPT。
3月30日,根据彭博社最新发布的报告显示,其构建迄今为止最大的特定领域数据集,并训练了专门用于金融领域的LLM,开发了拥有500亿参数的语言模型——BloombergGPT。
报告显示,该模型依托彭博社的大量金融数据源,构建了一个3630亿个标签的数据集,支持金融行业内的各类任务。该模型在金融任务上的表现远超过现有模型,且在通用场景上的表现与现有模型也能一较高下。
一般来说,在NLP领域,参数数量和复杂程度之间具有正相关性,GPT-3.5模型的参数量为2000亿,GPT-3的参数量为1750亿。
报告指出,研究人员利用彭博社现有的数据,对资源进行创建、收集和整理,通过构建迄今为止最大的特定领域数据集来完成BloomberGPT,并基于通用和金融业务的场景进行混合模型训练:
1.BloombergGPT优势:特定领域模型仍有其不可替代性且彭博数据来源可靠
在论文中,彭博社指出,现阶段,通用的自然语言处理模型可以涵盖许多领域,但针对特定领域模型仍有其不可替代性,因彭博社的大多数应用均为金融领域,着手构建了一个针对金融领域的模型尤其优势,同时可以在通用LLM基准测试上保持竞争力:
2.BloombergGPT的训练数据集:
BloombergGPT的训练数据库名为FINPILE,由一系列英文金融信息组成,包括新闻、文件、新闻稿、网络爬取的金融文件以及提取到的社交媒体消息。
为了提高数据质量,FINPILE数据集也使用了公共数据集,例如The Pile、C4和Wikipedia。FINPILE的训练数据集中大约一半是特定领域的文本,一半是通用文本。为了提高数据质量,每个数据集都进行了去重处理。
报告指出,在金融领域中的自然语言处理在通用模型中也很常见,但是,针对金融领域,这些任务执行时将面临挑战:
报告指出,从测试来看,BloombergGPT在五项任务中的四项(ConvFinQA,FiQA SA,FPB和Headline)表现最佳,在NER(Named Entity Recognition)中排名第二。因此,BloombergGPT有其优势性。
华尔街见闻就这个问题专门询问了ChatGPT,ChatGPT认为BloombergGPT是一项很有意义的技术进步: